CS162 — Introduction to Computer Science 2

Lab 08

Advanced Recursion

Cam on thay Tran Duy Quang da cung cap template cho mén hoc

\‘\OCKNO“'OO
Department of Software Engineering-FIT-VNU-HCMUS

‘guom;o
eI

CS162 Lab08 — Advanced Recursion

1

Notes

Create a single solution/folder to store your source code in a week.
Then, create a project/sub-folder to store your source code of each assignment.
The source code in an assignment should have at least 3 files:

e A header file (.h): struct definition, function prototypes/definition.

¢ A source file (.cpp): function implementation.

¢ Another source file (.cpp): named YourlD_Ex01.cpp, main function. Replace 01 by id of an
assignment.

Make sure your source code was built correctly. Use many test cases to check your code before
submitting to Moodle.

Name of your submission, for example: 18125001_W01_07.zip

CS162 Lab08 — Advanced Recursion

2

Content

In this lab, we will review the following topics:

e Solve popular recursion problems.

CS162 Lab08 — Advanced Recursion

3 Assignments

A: 01 problems / assignments.
H: 06 problems / assignments.

Implement these problems in the recursive style.

3.1 N Queens

Input: N: a chessboard with size N * N.

Output: location (i, j) of N queens in that chessboard. Only 1 solution is required.

m Eight Queens:

= Problem:
» Chessboard 8 x 8 cells.
» Try to put 8 queens on board.
» The queens do not capture each other:

> Not in same row. T =
> Not in same column. I _I{’
. . . F T 7
» Not in same primary diagonal. \\1- I L/
" . \ I /
» Not in same secondary diagonal. ol
=R -F-F-FF -
11
7/ | \\
/*{] IS
Ve " \\-
| 4
/ 1 N
[} N
1 K|
1 \
I \

m Eight Queens:

m Analysis:
» Can only put a queen on un-captured cells.
> If queen is put at (i, j), which cells are captured?

Column j
?

Row i - -l F-I-{-F
N

x

N

Primary diagonal i +j-n ‘ 3

Secor?dary diagonali—j+n

m Eight Queens:

m Backtracking:

TryQueen (cell (i, j), rowFlag, colFlag, pDiaFlag, sDiaFlag)

{
if (cell (i, j) is captured)
return;

Update captures at the cell;

if (iis lastrow)
Print result;
else
for (intk =0; k <7; k++)
TryQueen(cell (i+1, k),rowFlag,colFlag,pDiaFlag, sDiaFlag);

Roll back captures at the cell;

CS162 Lab08 — Advanced Recursion

a b c¢c d e f g h

AAAAA

a b c d e f g h

CS162 Lab08 — Advanced Recursion

3.2 N Queens

Input: N: a chessboard with size N * N.

Output: location (i, j) of N queens in that chessboard. Print all solutions.

3.3 Knight Tour

Input: N: a chessboard with size N * N.

Output: the movement orders of the knight (1 to N*N) in that chessboard. Only 1 solution is required.

m Knight Route:

m Problem:
» Chessboard 8 x 8 cells.
» Put a knight at a cell.
» Find route for the knight:

» Move through all board cells.
> Stop once at each cells.

Ne
"'

CS162 Lab08 — Advanced Recursion

m Knight Route:

m Analysis:
» Can only move to unoccupied cells.
> If knight at (i, j), which cells can move next.

1:(+2,j+1)
2:(i+2,j-1)

(+1,j-2)

4:(i—-1,j-2) 4\5\ /6/,,7
5:(i—2,j—1) P =3¢
B:(i—2,j+1) 34 / \ P8
7:(i—-1,j+2) 1
8:(i+1,j+2)

m Knight Route:

m Backtracking:

TryKnight(cell (i, j), board state, step)
{
if (cell (i, j) is occupied)
return;

Update board state;

if (is last step)
Print result;

else
TryKnight(cell (i + 2, j + 1), board state, step + 1);
TryKnight(cell (i + 2, j — 2), board state, step + 1);

Rol-l-i)ack board state;

Lab08 — Advanced Recursion

CS162 Lab08 — Advanced Recursion

3.4 Knight Tour

Input: N: a chessboard with size N * N, a start cell (istart, jstart) and an end cell (iend, jend).

Output: the movement orders of the knight (1 to N*N) in that chessboard. Only 1 solution is required.

For Codeforces/Hackerrank/Leetcode... assignments, you need to submit 2 files: a source code cpp
file, and an image/screenshot to prove that your code is ACCEPTED on
Codeforces/Hackerrank/Leetcode.

3.5 Tribonacci

You must write a recursive solution and your source code must be accepted.

https://leetcode.com/problems/n-th-tribonacci-number/

3.6 Permutation of N

Given N, print all permutation from 1 to N.

Example:

+ Input: N=3

+ Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,11,[3,1,2],[3,2,1]]

3.7 Permutation of an array

Given an array, the task is to print or display all the permutations of this array.
https://leetcode.com/problems/permutations/

3.8 Permutation of an array without duplicates

https://leetcode.com/problems/permutations-ii/

3.9 Next permutation

https://leetcode.com/problems/next-permutation/

3.10Permutation of a string

Write a program to print all permutations of a given string.

3.11Check permutation

https://leetcode.com/problems/permutation-in-string/

3.12Letter Case Permutation

https://leetcode.com/problems/letter-case-permutation/

