Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Note 11 - 07/04/2023

TABLE OF CONTENTS

Theorem

  1. If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n=0$.

Steps for convergent or divergent test

  1. If $\lim_{n \to \infty} a_n \neq 0$ then STOP. Summary: the series diverges.
  2. If $\lim_{n \to \infty} S_n = S \in \mathbb{R}$ then STOP. Summary: the series converges at $S$.

    If $\lim_{n \to \infty} S_n$ does not exist or approaches $\pm \infty$ then STOP. Summary: the series diverges.

  3. Use convergent tests:
  • Non-negative series: $\sum_{n=1}^{\infty} a_n$ with $a_n \geq 0$

    • Comparison test:

      If $0 \leq a_n < b_n$ then

      • $\sum_{n=1}^{\infty} a_n$ diverges $\Rightarrow$ $\sum_{n=1}^{\infty} b_n$ diverges.
      • $\sum_{n=1}^{\infty} b_n$ converges $\Rightarrow$ $\sum_{n=1}^{\infty} a_n$ converges.
    • Limit test:

      If $\lim_{n \to \infty} \dfrac{a_n}{b_n} = K \neq 0, \infty$ then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ have identical property in convergent testing.

    • Integral test:

      If $f(n)=a_n$ is a continuous and decreasing function on $[1,\infty)$ then $\int_1^\infty f(x) \ dx$ and $\sum_{n=1}^{\infty} a_n$ have identical property in convergent testing.

  • Alternating series (aka Leibniz criterion): $\sum_{n=1}^\infty (-1)^nb_n=-b_1+b_2-b_3+b_4-…$ with $b_n>0$
    • If $\{b_n\}$ decreases and $\displaystyle \lim_{n \to \infty} b_n=0$ then $\sum_{n=1}^\infty (-1)^nb_n$ converges.
    • If $\{b_n\}$ increases and $\displaystyle \lim_{n \to \infty} b_n \neq 0$ then $\sum_{n=1}^\infty (-1)^nb_n$ diverges.
  • Any series:
    • Absolute convergence:

      If $\sum_{n=1}^\infty \vert a_n \vert$ converges then $\sum_{n=1}^\infty a_n$ converges absolutely.

    • Ratio test (aka d’Alembert criterion)

      If $\displaystyle \lim_{n \to \infty} \left\vert \frac{a_{n+1}}{a_n} \right\vert = D$ then

      • If $D>1$ then the series diverges.
      • If $D<1$ then the series converges.
    • Root test (aka Cauchy criterion)

      If $\displaystyle \lim_{n \to \infty} \sqrt[n]{\left\vert a_n \right\vert} = C$ then

      • If $C>1$ then the series diverges.
      • If $C<1$ then the series converges.