Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Physics II - B18

TABLE OF CONTENTS

The RLC Circuit

We have $:$

\[\Delta U_E + \Delta U_B + \Delta E_{int} = 0\]

Now differentiate this equation with respect to time $:$

\[\frac{dU_E}{dt} + \frac{dU_B}{dt} + \frac{dE_{int}}{dt} = 0\]

We have two equations $:$

\[\Delta U_E = \frac{q^2}{2C}\] \[\Delta U_B = \frac{1}{2}Li^2\]

Recognizing that the third derivative is the rate at which energy is delivered to the resistor $:$

\[\frac{q}{C}\frac{dq}{dt} + Li\frac{di}{dt} + i^2R = 0\]

And $:$

\[i = \frac{dq}{dt}\]

So $:$

\[L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = 0\] \[q'' + \frac{R}{L} q' + \frac{1}{LC} = 0\]

Let $:$ $q(t) = e^{mt}$

\[m^2 + 2\frac{R}{2L}m + \frac{1}{LC} = 0\] \[\Delta' = (\frac{R}{2L})^2 - \frac{1}{LC}\]

$\Delta > 0 :$

\[m = -\frac{R}{2L} \pm \sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}}\] \[q(t) = C_1e^{m_1t} + C_2e^{m_2t}\]

$\Delta = 0:$

\[m = -\frac{R}{2L}\] \[q(t) = e^{mt}(At+B)\]

$\Delta < 0:$

\[m = -\frac{R}{2L} \pm i\sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}}\] \[q(t) = C_1e^{m_1t} + C_2e^{m_2t}\]

The LC Circuit

We have :

\[\Delta U_E + \Delta U_B = 0\]

Now differentiate this equation with respect to time $:$

\[\frac{d}{dt} \bigg(\frac{q^2}{2C} + \frac{1}{2}Li^2\bigg) = \frac{q}{C}\frac{dq}{dt} + Li\frac{di}{dt}=0\] \[\frac{d^2q}{dt^2} +\frac{q}{LC} = 0 \to q''(t) + \frac{1}{LC}q(t) = 0\]

So :

\[q(t) = Q_0cos(\omega t + \varphi)\] \[i(t) = \omega Q_0sin(\omega t + \varphi)\]

Damped Oscillators (Dao động tắt dần)

AC Circuit

Resistors in an AC Circuit

rms Current and Voltage

\[\Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}\] \[\Delta I_{rms} = \frac{\Delta I_{max}}{\sqrt{2}}\]

Power

\[P = i^2R = i_R \Delta v = \Delta V_{max}I_{max}sin^2(\omega t)\] \[P_{avg} = I^2_{rms}R\]

Inductors in an AC Circuit

Capacitors in an AC Circuit

RC circuit

\[I_{max} = \frac{\Delta V_{max, R}}{R} = \frac{\Delta V_{max, C}}{Z_C}\] \[\Delta V_{max} = \sqrt{\Delta V_{max, R}^2 + \Delta V_{max, C}^2} = I_{max}\sqrt{R^2 + Z_C^2}\]

RLC circuit

\[\Delta V_{max} = I_{max}\sqrt{(Z_L-Z_C)^2 + R^2}\] \[I_{max} = \frac{\Delta V_{max}}{\sqrt{(Z_L-Z_C)^2 + R^2}}\] \[Z_L = Z_C \to \omega^2 = \frac{1}{LC}\]