Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Physics II - B19

TABLE OF CONTENTS

Chapter 33

Difference between E & M

Maxwell’s Equations

Lorentz Force Law

Electromagnetic Waves in Free Space

Plane Electromagnetic Waves

E to B Ratio

Properties of EM Waves

Poynting Vector

Intensity

Energy Density

Assignments Chap 31


$i)$ When $S_1$ is closed $(t = 0):$

\[i = 0\] \[\Delta V_R = Ri = 0\] \[\Delta V_L = L\frac{di}{dt} = \xi\]

$ii)$ After a very long time $:$

\[i = \frac{\xi}{R}\] \[\Delta V_R = Ri = \xi\] \[\Delta V_L = L\frac{di}{dt} = 0\]
\[|\xi| = \bigg|-L \frac{di}{dt}\bigg| \to L = 2.4 \times 10^{-3} (H)\]

The magnetic flux through each turn $:$

\[L = \frac{N\Phi_B}{i} \to \Phi_B = \frac{LI}{N} = 19.2 \mu (Wb)\]

$S$ is closed for a long time $:$

\[I = \frac{\xi}{R} = 0.2(A)\]

After $S$ is opened, we have an $LC$ circuit, by conservation of energy $:$

\[LI^2 = CU^2 \to L = 0.281(H)\]

Assignments Chap 32

The current $:$

\[i_L = I_{max}sin(\omega t + \varphi)\] \[u_B = \frac{1}{2}Li^2 = \frac{1}{2}L\frac{2(\Delta V_{rms})^2}{(\omega L)^2}sin(\omega t + \varphi)^2\]

At $t = 0(s):$

\[u_B = 0 \to sin(\varphi)^2 = 0 \to \varphi = 0\]

At $t = \frac{1}{180}(s):$

\[u_B = \frac{1}{2}Li^2 = \frac{1}{2}L\frac{2(\Delta V_{rms})^2}{(\omega L)^2}sin(\omega t)^2 = 3.8(J)\]

$a)$

\[\displaystyle \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{IR}{IZ} = \frac{R}{\sqrt{R^2 + \frac{1}{(\omega C)^2}}}\]

$b)$ When the frequency decreases toward zero, the ratio will go to $0.$

$c)$ When the frequency increases without limit, the ratios will go $1.$

$a)$

\[f_{res} = \frac{1}{2\pi}\sqrt{\frac{1}{LC}} = 3.56 \times 10^3 (Hz)\]

$b)$

\[I_{max} = \frac{\Delta V_{max}}{R} = 5(A)\]

$c)$

\[\Delta V_L = Z_L I_{max} = 2.24 \times 10^3 (V)\]
\[\frac{\Delta V_1}{\Delta V_2} = \frac{N_1}{N_2} = 2.5 \to \Delta V_1 = 62.5(V)\] \[\frac{I_1}{I_2} = \frac{N_1}{N_2} = 2.5 \to I_1 = 2.5 \frac{U_{R_L}}{R_L} = 0.2(A)\] \[(\Delta V_{R_S})^2 = (\Delta V_S)^2 - (\Delta V_1)^2 \to \Delta V_{R_S} = 49.94(V)\] \[\displaystyle R_s = \frac{\Delta V_{R_S}}{I_1} = 250 (\Omega)\]